Search results

Search for "carbon particles" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • composite with significant electrical conductivity resulting from the presence of conductive carbon particles in a process that is much faster and easier to perform. It is also inexpensive as it does not require electricity consumption in long mixing and/or heating processes. The produced hydrogel
  • electrolytes in an electrochemical process. It provides a greater effective surface area and facilitates the transport of electrons and ions from the electrolyte to the electrocatalyst surface. As the morphological analysis showed, with the increase in the concentration of conductive carbon particles, the size
  • with the increase in the amount of cCB in the structure of the hydrogel, the characteristic peaks of the aforementioned functional groups forming the hydrogel become less and less intense (Figure 3c). It can therefore be assumed that the high concentration of conductive carbon particles overrides
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • carbon substrate and the chemical synthesis of PtNPs during catalyst fabrication. Platinum was deposited on carbon particles at room temperature using a pulsed laser deposition (PLD) system equipped with an ArF excimer laser (λ = 193 nm). The uniform deposition of PtNPs on carbon supports was achieved
  • W/cm2 obtained for commercial 20% Pt Vulcan XC-72R. This result was achieved with three times less Pt catalyst on the carbon support compared to the commercial catalyst, which means that a higher catalyst utilization factor was achieved. Keywords: carbon particles; cyclic voltammetry; fuel cells
  • supports in the form of nano- and microparticles. Herein, we report on the deposition of platinum on carbon particles using PLD to fabricate cost-efficient catalysts for PEMFCs with good performance. The research aimed to develop an effective physical method of PtNP deposition on carbon supports directly
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • carbon nanoparticles during electrophoretic purification of single-walled carbon nanotubes [1]. Sun et al. synthesized fluorescent carbon particles smaller than 10 nm, which were named “carbon dots” for the first time in 2006 [2]. Due to its significant fluorescent properties, this class of carbon
PDF
Album
Review
Published 05 Oct 2022

Gas sorption porosimetry for the evaluation of hard carbons as anodes for Li- and Na-ion batteries

  • Yuko Matsukawa,
  • Fabian Linsenmann,
  • Maximilian A. Plass,
  • George Hasegawa,
  • Katsuro Hayashi and
  • Tim-Patrick Fellinger

Beilstein J. Nanotechnol. 2020, 11, 1217–1229, doi:10.3762/bjnano.11.106

Graphical Abstract
  • the first cycles, limiting commercial viability. The trade-off to maximize the reversible capacities and simultaneously minimizing irreversible losses can be achieved by tuning the exact architecture of the subnanometric pore system inside the carbon particles. Since the characterization of small
  • no correlation between the irreversible capacity and any porosity descriptor. Thus, it is assumed that the measured porosity of HT carbon particles cannot be fully penetrated by the solvent molecules in SIB tests, potentially because of clogging caused by the larger DEC solvent molecules. Hence, our
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • of the HTC-processed carbon particles in the range of 250 to 850 °C causes a loss of the photoluminescent characteristics of the CDs without any significant change in the microstructure (amorphous structure) of the carbon particles. The LA processing of the annealed HTC-processed carbon particles
  • producing biocompatible CDs from biomass and biowaste and manipulating their PL characteristics. It is worth mentioning that we [33] previously studied the electrochemical performance of carbon particles of micrometer size, which were synthesized from the soybean residuals via hydrothermal carbonization and
  • high-temperature annealing in nitrogen. In contrast to the analysis of the electrochemical performance of large carbon particles of micrometer size [33], this work is focused on the optical characteristics of nanometer-sized CDs, which are synthesized by two different approaches. One is similar to the
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • 150 °C). The as-synthesized carbon particles show a well-defined spherical shape with diameters of 330 ± 50 nm and a smooth surface (see also the scanning electron microscopy (SEM) image in Figure 2a). Fe2O3 particles, as graphitization catalyst, are loaded successfully on pre-carbonized carbon
  • of a 0.75 M glucose solution in aqua dest. (165 mL) at 165 °C for 10.5 h. The resulting spherical carbon particles were washed three times with 200 mL aqua dest. and ethanol each, centrifuged and dried [36]. Synthesis of N-doped carbon spheres (NCS): The as-synthesized carbon spheres were carbonized
PDF
Album
Full Research Paper
Published 02 Jan 2020

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2019

Hydrothermal-derived carbon as a stabilizing matrix for improved cycling performance of silicon-based anodes for lithium-ion full cells

  • Mirco Ruttert,
  • Florian Holtstiege,
  • Jessica Hüsker,
  • Markus Börner,
  • Martin Winter and
  • Tobias Placke

Beilstein J. Nanotechnol. 2018, 9, 2381–2395, doi:10.3762/bjnano.9.223

Graphical Abstract
  • chosen reaction conditions lead to spherical carbon particles with a diameter of ≈200 nm that are quite strongly fused together and, therefore, form large agglomerates. Chain-like aggregates of spherical carbon particles, were also found by Tien et al. [58], when they synthesized carbon spheres by
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2018

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
  • ) has proved to be one of the most effective strategies for enhancing their adsorption performance in aqueous solutions [10][11][12]. Torad et al. [13] reported the high adsorption capacity of porous carbon particles with magnetic Co nanoparticles towards methylene blue (MB) dye. They attributed this to
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
PDF
Album
Review
Published 03 Apr 2018

Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

  • Luc Aymard,
  • Yassine Oumellal and
  • Jean-Pierre Bonnet

Beilstein J. Nanotechnol. 2015, 6, 1821–1839, doi:10.3762/bjnano.6.186

Graphical Abstract
  • ][35], MgH2 is ground using a carbon having the maximum BET surface area in order to agglomerate carbon particles on MgH2 particles. DSC traces of MgH2–10% Ct,z composite obtained after 4 h of grinding shows a decrease of 48 °C of the desorption peak maximum of hydride carbon composite compared to the
PDF
Album
Review
Published 31 Aug 2015

Carbon nano-onions (multi-layer fullerenes): chemistry and applications

  • Juergen Bartelmess and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2014, 5, 1980–1998, doi:10.3762/bjnano.5.207

Graphical Abstract
  • -materials, CNOs as functional constructs for intracellular transport have not been widely explored. However, given their size, homogeneity and purity (compared with carbon nanotubes) they could in principle add an important new avenue for the transport of imaging and therapeutic agents. These carbon
  • particles have demonstrated high cellular uptake, low cytotoxicity and lower inflammatory potential than CNTs and a very promising future for biomedical applications. HRTEM images of (a) diamond nanoparticles, (b) spherical carbon onions, and (c) polyhedral carbon onions. Diamond nanoparticles are
PDF
Album
Review
Published 04 Nov 2014

Design criteria for stable Pt/C fuel cell catalysts

  • Josef C. Meier,
  • Carolina Galeano,
  • Ioannis Katsounaros,
  • Jonathon Witte,
  • Hans J. Bongard,
  • Angel A. Topalov,
  • Claudio Baldizzone,
  • Stefano Mezzavilla,
  • Ferdi Schüth and
  • Karl J. J. Mayrhofer

Beilstein J. Nanotechnol. 2014, 5, 44–67, doi:10.3762/bjnano.5.5

Graphical Abstract
  • treatment always on top and below, respectively. The dissimilarity of the two types of employed carbon supports, Vulcan and HGS, becomes evident from Figure 4. While Vulcan is made of primary carbon particles of 10–40 nm that form aggregates with the typical branched chain-like structure of carbon black
PDF
Album
Supp Info
Review
Published 16 Jan 2014

AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

  • Renate Hiesgen,
  • Seniz Sörgel,
  • Rémi Costa,
  • Linus Carlé,
  • Ines Galm,
  • Natalia Cañas,
  • Brigitta Pascucci and
  • K. Andreas Friedrich

Beilstein J. Nanotechnol. 2013, 4, 611–624, doi:10.3762/bjnano.4.68

Graphical Abstract
  • high utilization of sulfur. In the peak current image, several black spots indicate regions where no current was measured and concurrently displayed highest stiffness. By comparing the size of the carbon particles with the particles in the range of a few ten nanometers as reported by [34], the
  • visible in the topography image. However, the total height difference has not changed significantly. The steep (almost vertical) borders of these terraces can hardly be measured by AFM and are visible as black regions. These steep and smooth features most likely represent large carbon particles with even
PDF
Album
Full Research Paper
Published 04 Oct 2013
Other Beilstein-Institut Open Science Activities